首页建筑研究 专题列表

人工神经网络应用于继电保护的探讨

收录时间:2007-07-20 07:29 来源:建筑中文网  作者:碧森尤信  阅读:0次 评论:0我要评论

内容提示:根据现代控制技术的人工神经网络理论提出了一种保护原理构成方案,并分析了原理实现的可行性和技术难点。

延伸阅读:人工 保护 原理 神经网络 继电

    摘 要:根据现代控制技术的人工神经网络理论提出了一种保护原理构成方案,并分析了原理实现的可行性和技术难点。(参考《建筑中文网

    人工神经网络(Aartificial Neural Network,下简称ANN)是模拟生物神经元的结构而提出的一种信息处理方法。早在1943年,已由心理学家Warren S.Mcculloch和数学家Walth H.Pitts提出神经元数学模型,后被冷落了一段时间,80年代又迅猛兴起[1]。ANN之所以受到人们的普遍关注,是由于它具有本质的非线形特征、并行处理能力、强鲁棒性以及自组织自学习的能力。其中研究得最为成熟的是误差的反传模型算法(BP算法,Back Propagation),它的网络结构及算法直观、简单,在工业领域中应用较多。

    经训练的ANN适用于利用分析振动数据对机器进行监控和故障检测,预测某些部件的疲劳寿命[2]。非线形神经网络补偿和鲁棒控制综合方法的应用(其鲁棒控制利用了变结构控制或滑动模控制),在实时工业控制执行程序中较为有效[3]。人工神经网络(ANN)和模糊逻辑(Fuzzy Logic)的综合,实现了电动机故障检测的启发式推理。对非线形问题,可通过ANN的BP算法学习正常运行例子调整内部权值来准确求解[4]。

    因此,对于电力系统这个存在着大量非线性的复杂大系统来讲,ANN理论在电力系统中的应用具有很大的潜力,目前已涉及到如暂态,动稳分析,负荷预报,机组最优组合,警报处理与故障诊断,配电网线损计算,发电规划,经济运行及电力系统控制等方面[5]。

    本文介绍了一种基于人工神经网络(ANN)理论的保护原理。

    1、人工神经网络理论概述

    BP算法是一种监控学习技巧,它通过比较输出单元的真实输出和希望值之间的差别,调整网络路径的权值,以使下一次在相同的输入下,网络的输出接近于希望值。

    在神经网络投运前,就应用大量的数据,包括正常运行的、不正常运行的,作为其训练内容,以一定的输入和期望的输出通过BP算法去不断修改网络的权值。在投运后,还可根据现场的特定情况进行现场学习,以扩充ANN内存知识量。从算法原理看,并行处理能力和非线性功能是BP算法的一大优点。

    2、神经网络型继电保护

    神经网络理论的保护装置,可判别更复杂的模式,其因果关系是更复杂的、非线性的、模糊的、动态的和非平稳随机的。它是神经网络(ANN)与专家系统(ES)融为一体的神经网络专家系统,其中,ANN是数值的、联想的、自组织的、仿生的方式,ES是认知的和启发式的。

    文献[1]认为全波数据窗建立的神经网络在准确性方面优于利用半波数据窗建立的神经网络,因此保护应选用全波数据窗。

    ANN保护装置出厂后,还可以在投运单位如网调、省调实验室内进行学习,学习内容针对该省的保护的特别要求进行(如反措)。到现场,还可根据该站的干扰情况进行反误动、反拒动学习,特别是一些常出现波形间断的变电站内的高频保护。

    3、结论

    本文基于现代控制技术提出了人工神经网络理论的保护构想。神经网络软件的反应速度比纯数字计算软件快几十倍以上,这样,在相同的动作时间下,可以大大提高保护运算次数,以实现在时间上即次数上提高冗余度。

    一套完整的ANN保护是需要有很多输入量的,如果对某套保护来说,区内、区外故障时其输入信号几乎相同,则很难以此作为训练样本训练保护,而每套保护都增多输入量,必然会使保护、二次接线复杂化。变电站综合自动化也许是解决该问题的一个较好方法,各套保护通过总线联网,交换信息,充分利用ANN的并行处理功能,每套保护均对其它线路信息进行加工,以此综合得出动作判据。每套保护可把每次录得的数据文件,加上对其动作正确性与否的判断,作为本身的训练内容,因为即使有时人工分析也不能区分哪些数据特征能使保护不正确动作,特别是高频模拟量。

    神经网络的硬件芯片现在仍很昂贵,但技术成熟时,应利用硬件实现现在的软件功能。另外,神经网络的并行处理和信息分布存储机制还不十分清楚,如何选择的网络结构还没有充分的理论依据。所有这些都有待于对神经网络基本理论进行深入的研究,以形成完善的理论体系,创造出更适合于实际应用的新型网络及学习算法[5]。

    参考文献

    1、陈炳华。采用模式识别(智能型)的保护装置的设想。中国电机工程学会第五届全国继电保护学术会议,[会址不详],1993

    2、Robert E.Uhrig.Application of Artificial Neural Networks in Industrial Technology.IEEE Trans,1994,10(3)。(1):371~377

    3、Lee T H,Wang Q C,Tan W K.A Framework for Robust Neural Network-Based Control of Nonlinear Servomechannisms.IEEE Trans,1993,3(2)。(3):190~197

    4、Chow Mo-Yuen.The Advantage of Machine Fault Detection Using Artificial Neural Networks and Fuzzy Logic Technology.IEEE Trans,1992,5(6)。(2):1078~1085

    5、吴捷。现代控制技术在电力系统控制中的应用。全国高校电力系统及其自动化专业年会,广州,1997 6 Matthew Zedenberg.Neural Networks Models in Artificial Intelligence.[s.l.]:[s.n.],[s.a.]

来源: 《建筑中文网》.

原文网址:http://www.pipcn.com/research/200707/7716.htm

也许您还喜欢阅读:

一种提高电缆载流量的管道填充介质

提高继电保护运行的可靠性

变电站继电保护系统中信息管理技术的应用

建筑经济管理中神经网络的应用

神经网络在工程造价和主要工程量快速估算中的应用研究

室内设计原理

采油螺杆泵故障原因分析及对策

爆炸压密法加固饱和砂土的原理及应用设计

平面图形设计中的符号学原理

浅谈建筑中的自然通风技术应用


【重要声明】本作品版权归建筑中文网和作者所有,允许以学习、研究之目的转载、复制和传播,但必须在明显位置注明原文出处和作者署名(请参考以下引文格式)且保证内容一致性,不得用于出售、出版、付费数据库或其它商业目的,本站保留追究一切法律责任的权利。投稿信箱
引用复制:网址 QQ/MSN 论文/著作 HTML代码

请告诉我们

请告诉我们您的知识需求以及对本站的评价与建议。
满意 不满意

Email: