首页建筑研究 专题列表

论太阳能技术

收录时间:2009-05-08 17:56 来源:建筑中文网  作者:郑功元  阅读:0次 评论:0我要评论

内容提示:随着经济的发展,随即而来的就是能源危机和环境污染,利用可再生、无污染的能源已成为现代社会的一个趋势。文章介绍了我国目前太阳能建筑的现实状况,分析了其中的节能潜力,并介绍了太阳能建筑节能的相关内容和实现技术,探讨太阳能建筑节能的可持续发展道路。

延伸阅读:太阳能 建筑 热量

【论文关键词】: 太阳能;建筑;热量
    【论文摘要】: 随着经济的发展,随即而来的就是能源危机和环境污染,利用可再生、无污染的能源已成为现代社会的一个趋势。文章介绍了我国目前太阳能建筑的现实状况,分析了其中的节能潜力,并介绍了太阳能建筑节能的相关内容和实现技术,探讨太阳能建筑节能的可持续发展道路。
   
   
    随着改革开放和经济发展,我国太阳能建筑的面积日趋增大,建筑节能是近年来世界建筑发展的一个基本趋向,也是当代建筑科学技术的一个新的生长点。抓住机遇,不失时机地推进建筑节能,有利于国民经济持续、快速、健康发展,保护生态环境,实现国家发展的第二步和第三步战略目标,并引导我国建筑业与建筑技术随同世界大潮流迅速前进,太阳能建筑的节能具有很好的前景,大有可为。
    我国地域宽广,房屋建筑规模巨大,约有一半建筑位于北方"三北"地区,由于气候原因,每年约有4- 6个月的采暖期,该地区规定设置集中采暖系统,以往习惯称之为集中采暖地区。中部地区(冬冷夏热地区),即长江流域地区,虽然冬季平均气温高于0℃,但相对湿度较高,冬季湿冷,而夏季又酷热。该地区属于中国经济发达地区,包括长江上游在内,涉及18个省、自治区、直辖市,总面积180万k平方米,人口近4 亿。年工农业总产值占全国40%,人均产值及人均收入均高于全国平均水平。以往由于经济上的原因,该地区一般城镇住宅围护结构无保温措施,也不设置采暖设施,因此冬夏季室内热环境条件相当差。南方属于亚热带气候,夏季气候炎热,降温则是主要解决的问题。
    与发达国家相比,集中采暖地区城镇住宅围护结构保温、气密性较差,供热系统效率较低,单位面积的采暖能耗要高得多。我国已成为世界上建房最多的国家,近年来每年全国建成城镇住宅2 亿平方米以上,随着人民生活的不断改善,人们对于建筑热环境的舒适性要求愈趋迫切,中部地区冬季采暖势在必行,各地"空调热"也日渐高涨。所以,如何尽量利用太阳能、合理建筑设计,对北方集中采暖地区可以减少采暖、空调能耗;而对于中部及南部地区,改善室内热环境条件,达到低水平的室内舒适参数,已成为一个重要的课题。
    我国从80 年代起,对城镇多层住宅应用被动太阳能进行采暖及降温技术已有研究,先后在石家庄、滩纺及杭州等处建成了试点建筑,较好的改善了室内热环境条件。当时的技术路线是由热工外算开始,进而建造示范建筑以验证效果。国外从70年代初期起,投入了相当的力量进行计算机软件的开发工作,应用动态模拟计算,进行建筑热工参数计算分析,进而可以预测室内环境参数,获得应用被动太阳能的最佳建筑设计方案,同时也建设示范建筑以验证软件的可信性。这类从合理建筑及热工设计着手,在增加有限的建设投资下,尽量利用被动太阳能来达到低水平的室内冬夏热环境条件的住宅,这里称为"节能住宅"。
   
    一、各种参数对空温的影响
    为了进行参数研究,首先确定了一个基础方案,即对条状住宅建筑模型,取其南向主立面外窗的窗墙比为30.3%,单层窗,外墙与屋面传热系数均为0.83w/平方米,换气次数为1.1次h,不考虑内部蓄热量。在进行参数分析时,固定其他参数,仅变化一个参数来分析对室温的影响。
    1. 内部蓄热量
    蓄热量会影响室温,特别是对最高室温有影响。冬季,内部蓄热量会使月最高温度降低,而使月最低温度升高,至于月平均温度,则略有升高。显然,内部蓄热量可以改善冬季室内热环境条件。对夏季来说,蓄热量同样也降低了月最高温度及升高了月最低温度,而月平均温度则无多大影响。当建筑模型中一个住户内蓄热量相当于100平方米、200mm厚混凝土墙时,可使八月份住宅最高温度下降3c左右,可使一月份住宅最低温度升高2.8℃,这将对室内热环境有较大的改善。
    2. 换气次数
    可以预见,增加换气次数会使冬季室内热环境变差,但能改善夏季室内热环境。对夏季来说,换气次数由1.1次h增加到10次h,可使八月份月最高温度降低4.4℃、月平均温度下降4.8℃,月最低温度下降7.8℃。显然,冬季换气次数越低越好,如果园护结构、门窗密闭性好,换气次数可以降低到1.5次/h,此时与1.1次h相比,室温可提高2-3℃, 3. 增强夜间通风
    降低夏季室温的一个措施是增强夜间通风,计算了三种方案,一是全天以1. 1次/h换气,第二种方案全天以10次/hh换气,第三种方案则采取白天(早6一晚2l时)1.1次h换气,夜间(晚21一晨6时)加强通风至10次h.计算结果表明,对于内部蓄热量较大时,第三方案与第一方案相比,月最高温度下降3.7℃,月平均温度下降5.2℃,而月最低温度下降达7.7℃。可见增强夜间通风对改善夏季室内热环境是十分奏效的。
    4. 南窗面积
    窗户开启面积既与热损失量有关,也与通过窗户玻璃进入室内的太阳得热量有关。太阳辐射得热量与窗户朝向有密切的关系,相比之下热损失与朝向的关系就不那么密切了。这里分析南向窗户面积对室温的影响。计算三种不同的窗墙比,它们分别是9.3%、30.3%及60.5%。冬季工况计算表明,窗墙比由19.3%增大至60.5%后,一月份最高温度升高3.6℃,平均温度升高2.7℃,而最低温度提高2.5℃的夏季来说,月最高温度、月平均温度及月最低温度分别要提高1.6℃、0.9℃及0.4℃。
    由此可见,南向窗墙比大且具有较大内部蓄热量时,可以改善冬季室内热环境条件;至于夏季,南向窗户面积增大会提高一点室温,使室内热环境条件略为变差-点。
    5. 主立面朝向
    主立面朝向不仅对冬季有影响,而且对夏季也有影响。主立面朝东及朝西时室温相同,与主立面朝南及朝北相比,室内热环境条件都要来得差。对于冬季来说,主立面朝南为最佳。
    6. 水平遮阳板伸出长度
    夏季除了采用加大通风量来降低室温外,另一条途径是在窗户上方设置遮阳板,以减少太阳入射量。计算了不同伸出长度(水平方向)一月及八月份室温情况。由计算可以得出,水平遮阳板对夏季有明显改善室内热环境的作用,但遗憾的是,同时也使冬季室内热环境变差。夏季时,水平遮阳板的伸出长度由0,0.4,0.9及1.5m变化时月平均温度可分别降低1.0,2.0及2.2℃,但冬季却也相应降低了月平均温度0.2,0.7及 2.2℃。
    7. 窗户的层数
    增加窗户层数将减少热损失,但也在一定程度上减少了太阳得热量。采用单层宙及双层宙作计算比较,发现双层窗对冬季室温略有改善(一月份平均室温增加0.9℃),但同样使夏季室温略有变差(八月份平均室温升高0.7℃)。
    8. 外墙、屋面外表面颜色
    外墙、屋面外表面涂成白色会有助于降低夏季室温。进行二种方案比较计算,一种采用吸收率为0.8的深色外表面,另一种吸收率为浅色外表面。计算结果表明,浅色表面可使夏季室内热环境得到明显改善,但同时也使冬季情况变差。在二方案中外墙及屋面传热系数均采取0.83w平方米,八月份平均室温可降低2℃,但一月份平均室温也降低了1.3℃。外墙与屋面保温越好,这种影响将越小。
    9. 外墙与屋面热工设计
    采用三种方案进行比较计算。
    第一方案为外墙与屋面的传热系数及均为0.83w/ (℃。m),
    第二方案外墙K=0.83w/(℃。m),屋面K=0.28w/(℃。m),
    第三方案外墙与屋面K值均为0.28w/(℃。平方米)。 由计算可以看出,屋面保温对降低夏季顶层室温的影响尤其大,第二方案与第一方案相比,八月份月最高温度下降7℃,平均温度下降0.4℃,但月最低温度上升了 6℃。从冬季情况看,保温改善有利于室温提高,第三方案与第一方案相比,一月份平均室温升高1.1℃,5最低温度升高了2.4℃,但月最高温度有所下降 (5℃)。顶层天花板表面温度受屋面保温影响甚大,对于屋面有很好保温的场合K=0.28w/(℃。m3),在年最热日下午14时,天花板内表面温度仅只比室温高0.5℃,但K=0.83w/(℃。m)的屋面来说,要高出3.8℃。如果采用外墙及=0.74w/(℃。m),屋面X=0.63w/ (℃。m),并具有较大的内部莆热量,应用双层窗,加强夜间通风(晚21时至凌晨6时,换气次数为10次/h),此时最热日下午14时室温为37.2℃,天花板内表面温度只有33.6℃,室内热环境可以得到明显的改善。
   
    二、节能住宅设计原则
    根据以上参数研究,提出如下设计原则:
    1. 冬季换气次数应该尽可能低,而夏季则尽可能高。

原文网址:http://www.pipcn.com/research/200905/12635.htm

也许您还喜欢阅读:

浅谈太阳能的利用技术

地源热泵技术

中央空调系统及其安装施工浅析

太阳能建筑一体化的春天

夏热冬冷地区住宅建筑太阳能一体化技术的适用性研究

窗户永远向太阳-会旋转的建筑问世

当前国内外建筑中太阳能能源利用的现状分析

太阳能水环热泵供热系统

被动冷却技术在我国建筑节能中的应用前景

“生态建筑”的思与行


【重要声明】本作品版权归建筑中文网和作者所有,允许以学习、研究之目的转载、复制和传播,但必须在明显位置注明原文出处和作者署名(请参考以下引文格式)且保证内容一致性,不得用于出售、出版、付费数据库或其它商业目的,本站保留追究一切法律责任的权利。投稿信箱
引用复制:网址 QQ/MSN 论文/著作 HTML代码

请告诉我们

请告诉我们您的知识需求以及对本站的评价与建议。
满意 不满意

Email: