变风系统的VAV末端
- 低碳节能建筑设计的相关问题及解决方法
- 江苏建筑职业技术学院图书馆设计文化理念
- 四川雅安名山县涌泉村抗震小学的设计理念
- 四川汶川5.12大地震的启示
- 汶川大地震震中纪念馆的创作思考
- 洛阳洛南新区雅安新城结构设计
- 绿色居住建筑的节地设计
- 广州珠江新城海心沙地下空间建筑设计方案
- 黔东南地区郎德苗寨民居的热适应性
- 西气东输工程中长输管道站场建筑模块化设计与应用
内容提示:与工业发达国家相比,在变风量空调的领域,我国已经落后许多年,随着空调事业的发展,近年来,变风量空调系统的研究,VAV系统开发和应用,已经提到议事日程。相信在不久的将来,VAV末端机组将在我国空调领域中得到广泛的应用。
摘要: 与工业发达国家相比,在变风量空调的领域,我国已经落后许多年,随着空调事业的发展,近年来,变风量空调系统的研究,VAV系统开发和应用,已经提到议事日程。相信在不久的将来,VAV末端机组将在我国空调领域中得到广泛的应用。(参考《建筑中文网》)
关键词: VAV末端 变风量 冷热负荷 末端选型
1、VAV末端的工作原理
向房间送入室内的冷量按下式确定:
Q=C.ρ。L(tn-ts) (1)
式中 C—空气的比热容,KJ/(Kg.°c);ρ—空气密度,Kg/m3;L—送风量,m3/S;
tn—室内温度,°c;ts—送风温度,°c;Q—吸收(或放入)室内的热量,KW.
如果把送风温度设为常数,改变送风量L,也可得到不同的Q值,以维持室温不变。
空调系统的VAV末端按变风量的工作原理设计,当空调送风量原理设计,当空调送风通过VAV末端时,借助于房间温控器,控制末端进风口多叶调节风阀的开闭,以不改变送风温度而改变送风量的方法,来适应空调负荷的变化,送风量随着空调负荷的减少而相应减少而相应减少,这样可减少风机和制冷机的动力负荷。
当系统送风量达到最小设定值,而仍需要下调室内空气参数时,可直接通过加热器再热,或启动一台辅助风机,吸取吊顶中的回风,送入末端机组内,与冷气流混合后一起通过加热器再热后送入房间,达到维持室内空气参数的目的。
2、VAV末端的产品特点
2.1 省能运行
VAV末端借助于进口调节阀,并联风朵,热水盘管,电热盘管、电热盘管、风速测量装置、房间恒温器,气动或电动控制元件,能使空调系统达到省能运行。
部分负荷时,能避免在定风量系统中,再热器的冷热负荷抵消而造成的双重能量消耗。如考虑到系统设备的同时使用系统,能使VAV末端系统总风量减少,节省大量风机水泵的电能。
2.2 组合灵活
VAV末端结构紧凑,机组组合灵活。
按设备的使用功能分,机组有单风道、双风道、热水再热、电热再热,并联风机驱动等不同的末端组合。近空调机需要,机组还可配备静压箱和消声箱和消声器。按设备的控制功能分,机组有气功、电动(模拟/数字)、压力相关型和压力无关型等不同组合。
2.3 静音设计
箱体设计成内壁贴有带保温的消声材料的消声器。箱内通常不设风机,并联风机动力小,噪声低。末端的送风动力主要来自于系统的可变风量主风机,这样,能使风机静音运转。
在部分负荷时,VAV末端的噪声通常比同风量的风机盘管加新风系统低,特别适用于图书馆、演播室、影剧院等场合。
2.4 控制先进
机组进气口设有电子风速传感器,可以根据房间的温度要求,通过压力无关型气动/电动(模拟/数字)控制器调节送风量,温度控制品质好。
2.5 安装方便
与同风量的风柜相比,VAV末端机组结构紧凑,机组高度小于 500MM,有效地增加了机组的安装空间,减少了层高对机组安装的影响。由于冷冻/冷凝水管不进入天花板上部,没有风机盘管的凝水盘,不存在冷凝滴水污损天花板现象。设置在机组侧面或底部的维修孔,使机组的安装、维护和保养更为方便,有效地减少机组的安装和维修成本。
3、VAV末端的基本组合
3.1 单风道变风量末端
这是最简单的变风是末端,仅有一条送风道通过末端设备和送风口向室内送风。根据空调负荷的减少而相应减少,这样可实现对室温,室内最大,最小风量的有效控制,减少风机和制冷机的动力负荷。
这种组合只能对各房间同时加热工冷却,无法实现在同一时期内,对有的房间加热,有的房间冷却。当显热负荷减少时,室内相对湿度也不易控制。因此,仅适用于室内负荷比较稳定。室内相对湿度无严格要求的场合。
3.2 双风道变风量末端
机组具有冷热两个风道,当房间的送风量随着冷负荷的减少而达到最小风量时,开启热风阀,向房间补充热量,使系统的负荷得到有效的调节。
这种组合,对房间的负荷适应性强,能满足有的房间加热,有的房间冷却的要求。由于负荷得到补偿,最小风量得到控制,室内的相对湿度可保持在较好的水平上,但系统需增加一条风道,设备费和运行费将有所提高。
3.3 热水再热单风道变风量末端
在单风道变风量末端机组上,串联一热水再热盘管即成。当系统风量达到最小设定值,而仍需要下调室内的空气参数时,一次风可通过热水加热器再热、送入房间,达到维持室内空气参数的目的。
这种末端对房间的调节,基本与双管末端类似,但系统需敷设热水管,设备费和运行费也有气提高。
3.4 电热再热单风道变风量末端
由单风道变风量末端串联一电热盘管组合而成,其加热工作原理与串联热水盘管相同。
3.5 并联风机驱动的单风道变风量末端
由单风道变风量末端并联一离心风机组合而成,当系统送风量达到最小设定值,而仍需要下调室内的空气参数时,启动一并联风机,吸取吊顶中的回风,送入机组内,与冷气流混合后送入房间。一次风与回风的混合,可有效地节省能量,并使系统具有较好的气流分布。
3.6 并联风机驱动热水再热的单风道变风量末端
在并联风机驱动的单风道变风量末端上,串联一热水再热盘管组合而成。当系统送风量达到最小设定值,而仍需要下调室内的空气参数时,启动一并联风机,吸取吊顶中的回风,送入机组内,与冷气混合后通过回热器再热,送入房间。
3.7 并联风机驱动电热再热的单风道变风量末端
在并联风机驱动的单风道变风量末端上,串联一电热盘管组合而成。其工作原理与3.6节同。
4、VAV末端的部件结构
4.1 箱体采用薄形设计,由镀锌板外壳制成,内衬厚度为25-50mm,密度为40kg/m3的玻璃纤维,表面贴有穿孔铝箔,用保温钉固定在面板上的内表面上,具有防火,隔热、隔声和防腐的能力。机壳内的最大风速可达到20m/S.
一次风高压侧管采用圆管或椭圆管,低压侧风管采用滑动法兰连接。机组下侧或两侧,设有通道门,在不影响机组管道连接的情况下,能方便地对风机和电机进行维护保养。
4.2 调节风门
由4-6片对开式叶片组成的节流基本功调节风门,具有良好的密封和气流设计。当进口压力为750Pa时,风门的最大泄漏量为额定风量的2%.
在风门叶片伸出轴上设有无需保养的长寿命尼龙自润滑轴承,与执行器连接后,风门能按房间的温度要求,通过温控器控制进气口的一次风量。
一次风的风量采用压力无关型控制器,控制器可在工厂设定。控制区间为100%-10%,控制误差为±5%-±10%,控制精度主要依赖于控制器的型式。
4.3 风速传感器
在机组进口调节风门前设平均风速传感器,提供正比于流量的压差信号,通过压差信号利用图表可直接读得机组一次风的风量,并实现对风门的控制。
最小的一次风压差信号,利用图表可直接读得机组一次风的风量,并实现对风门的控制。
最小的一次风压差信号为25Pa,在典型的一次风流量区间,由平均风速传感器测得的压差,在校正图中的误差为±3%.
4.4 热水盘管
热水盘管具有镀锌钢板壳,铜管套铝片结构,机械涨管。铜管内径为??9.5-12.7mm,铝片片距为1.80-2.54mm,排数为1-4排,每排设一回路,其热量区间为2-18KW.
热水盘客设有放水和放气孔并有左右方向之分,盘管的泄漏压力为180Pa.需要时还可设置电动控制阀,调节水量。
4.5 电热盘管
电热盘管设置在由镀锌钢板组成框架的卧式机组内,安装在VAV末端机组的出口。通常按加热量、电气特性和控制级数进行设计。由80/20镍铬丝制成的电热盘管放在充满二氧化镁的不锈钢管内,由固定的陶瓷轴套支撑。
4.6 并联风机
并联风机具有前向多翼离心叶轮,双吸结构,镀锌板外壳,电动机直接驱动,通常安装在VAV末端机组的出口,有吸入和压出两种不同的安装形式。为了防止停机时的回流,在风机的出口处设在回流风门。
风机电机是一种节能型的单相电容电机,带有自动复位的过载保护,适于调速器(SCR)的调速运行,提供风机风量的无级调速。风机的设计风量可由速度控制器在现场设定。风机电机级与系统匹配,保证从最小电压时稳定运转。
电机风扇部件维修时可直接从机组侧面拆下,而不需将风扇与电机分离,电机安装在进口环上,进口环具有扭曲的机架,机架上设有带含油轴承的橡胶轴套。
原文网址:http://www.pipcn.com/research/200508/3300.htm
也许您还喜欢阅读: