江西柘林水电站扩建工程爆破控制设计
- 低碳节能建筑设计的相关问题及解决方法
- 江苏建筑职业技术学院图书馆设计文化理念
- 四川雅安名山县涌泉村抗震小学的设计理念
- 四川汶川5.12大地震的启示
- 汶川大地震震中纪念馆的创作思考
- 洛阳洛南新区雅安新城结构设计
- 绿色居住建筑的节地设计
- 广州珠江新城海心沙地下空间建筑设计方案
- 黔东南地区郎德苗寨民居的热适应性
- 西气东输工程中长输管道站场建筑模块化设计与应用
内容提示:江西柘林水电站扩建工程爆破开挖量大,爆破频繁,工期紧,在施工过程中要求爆破开挖不影响原水工建筑物安全(特别是“80山包”棱体稳定),并保证原电厂保持正常发电的工作状态,而扩建工程的大量爆破开挖部位距离原水工建筑物及厂房较近,因此近建筑物爆破施工的控制是本工程成败的关键之一。
摘要:江西柘林水电站扩建工程爆破开挖量大,爆破频繁,工期紧,在施工过程中要求爆破开挖不影响原水工建筑物安全(特别是“80山包”棱体稳定),并保证原电厂保持正常发电的工作状态,而扩建工程的大量爆破开挖部位距离原水工建筑物及厂房较近,因此近建筑物爆破施工的控制是本工程成败的关键之一。(参考《建筑中文网》)
关键词:江西 柘林电站 爆破 开挖 控制
1概况
柘林水电站扩建工程位于江西省北部,鄱阳湖以西的柘林镇,地处修河中游末端。柘林水电站水库总库容79.2亿m3,是我国最长的粘土心墙坝(总长590.75m)。
扩建工程在原柘林水电站泄洪(兼放空)洞北侧,水工建筑物由引水系统(引水明渠、进水口、二条引水隧洞)和厂区系统(地面厂房、开关站、尾水渠)组成。装机二台单机容量120MW,扩建后该电站总装机容量达420MW.两台机组分别于2001年12月和2002年5月并网发电。新厂房布置在古滑坡体地基山上,紧靠老电站厂房和老开关站。进水口布置毗邻宽仅30余m的“80山包”,它实际上起着挡水坝的作用,并且“80山包”底部被F65、F67两条大断层切割成棱体,扩建工程中的两条引水隧洞从此构造棱体的底部穿过。新开关站紧靠老开关站布置。
扩建工程施工期,原电站仍需承担江西电网的调峰任务,要求保证其正常运行发电。大坝系统和泄洪系统仍按原设计、校核洪水标准拦蓄和宣泄洪水。施工期有正常航运、过木和供水要求。因此,控制爆破的成功与否,关系到整个扩建工程的成败。
2施工特性
扩建工程土石方开挖总量为219.7万m3,主体工程开挖项目有:引水明渠、进水口、引水隧洞、地面厂房、尾水渠、开关站等。各部位开挖工程量见表1.
该工程地质条件复杂,“80山包”为一单薄的柘林水库挡水山体,山体厚度约30 m,风化严重,其间受F65、F67两断层横向切割组成一构造棱体,成倒三角形,体积近12万m3,它的稳定直接关系到水库的安全。因此,在进水口、厂房实施开挖爆破时,必须严格控制爆破振动对“80山包”及构造棱体产生的不利影响。此外,由于本扩建工程厂区系统开挖距原枢纽建筑物较近,并穿插其中,而施工过程中要求爆破开挖不影响原建筑物的安全,保证电厂正常发电,开挖量大、爆破频繁。
3爆破试验
爆破试验的目的是为了观测爆破开挖对“80山包”、原电站建筑物及正在运行的机电设备的影响,确定爆破参数,提供参考的施工经验公式。
爆破地震波在岩体内的传播规律,质点振动速度的衰减特性可用下式来拟合:
式中:Q——单响药量(kg)
R——测点至爆心的直线距离(m)
V——为质点振动速度峰值(cm/s)
K,α——反映爆破方式与地质条件等综合影响的回归待定统计系数。
进水口爆破开挖,对“80山包”沿地面传播一般的规律,共进行了6次爆破试验。厂房段开挖爆破,对原厂房、开关站、继保室沿地面传播一般的规律,共进行了8次爆破试验。对进水EL106m以上梯段开挖爆破(孔径Φ110mm)拟合的K值为36.2,α值为1.469;对进水EL106m以下梯段开挖爆破(孔径Φ70mm)拟合的K值为20.3,α值为1.35;对厂区EL40m以上梯段开挖爆破(孔径Φ110mm)拟合的K值为98.23,α值为1.97;对厂区EL40m以下梯段开挖爆破(孔径Φ70mm)拟合的K值为23.1,α值为1.413.
根据建(构)筑物所允许的安全控制标准,由爆破振动衰减规律公式得允许最大单响药量,从而对单响药量控制。其单响药量计算公式为:
表1各部位开挖工程量表
开挖部位 | 土石方(万m3) | 岩石岩性 | |
引水系统 | 引水明渠 | 51.568 | Zbd硅质泥灰岩、Zbp冰碛岩、Zad6中粗粒砂岩 |
进水口 | 15.27 | Zad5粗粒砂岩、少量Zad6中粗粒砂岩 | |
引水隧洞 | 3.979 | Zad6厚层长石石英砂岩、Zad6中细砂岩、Zad6中粗粒砂岩 | |
厂区系统 | 排水洞 | 0.23 | |
尾水渠 | 35.772 | Zad6中粗粒砂岩、Zad6中粗粒砂岩、Zad6中粗粒砂岩、ptba泥质板岩 | |
开关站 | 10.306 | ptba泥质板岩 | |
厂房边坡 | 97.425 | ||
其它 | 0.176 | ||
围堰 | 1.521 |
爆破可能对原枢纽建筑物产生一定的影响,扩建
开挖各爆区与需要保护的建筑物之间直线距离见表2.
表2各爆区与需保护建(构)筑物之间最短直线距离表
爆区 | 需保护建(构)筑物 | 直线距离(m) |
引水渠进水口 | 拦河大坝 泄洪(兼放空)洞进口 “80山包”棱体及原防渗帷幕 | 280 120 50 |
厂房 | 拦河大坝 泄洪(兼放空)洞进口 “80山包”棱体 原防渗帷幕 原厂房 原开关站 | 50 50 40 100 110 100 |
尾水渠 | 原厂房 原开关站 泄洪(兼放空)洞 | 50 0 0 |
开关站 | 原开关站 | 0 |
引水隧洞 | 泄洪(兼放空)洞及“80山包”棱体 | 150 |
4.1各开挖部位控制爆破参数确定
根据国家标准《爆破安全规程》GB22—86和水电部《水工建筑岩石基础开挖工程施工技术规范》SL47—94,提出了部份建筑物的地面质点允许振速,对规范没有提到的建(构)筑物,根据现场爆破试验监测及参考国内外其它工程经验确定。部份国内外工程实践中采用的爆破安全质点振速控制指标见表3.
表3部份国内外工程实际采用的允许振速表
序号 | 电站名称 | V/(cm/s) | 建(构)筑物 |
1 | 天生桥二级厂房开挖 | 10 4 | 边坡坡角 滑坡体 |
2 | 北京官厅水库溢流道扩建 | 4 5~6 | 房屋 土坝 |
3 | 青铜峡唐渠电站 | 2 0.5 1 | 开关站 中控室 电机层 |
4 | 八盘峡扩机 | 1.5 9.5 10 2.5 | 中控室 帷幕灌浆 大体积混凝土 闸门 |
5 | 三门峡 | 0.5 0.5 | 发电机楼板 机组运行时 |
6 | 江垭水电站 | 1.5 | 帷幕灌浆 |
7 | 西班牙维拉卡水电站 | 1.6 3 5 | 水轮机 闸门、闸墩 隧洞 |
其中对泄洪(兼放空)洞出口导墙认为不完全是大体积混凝土,作一般混凝土结构物处理,地面质点允许振速定为小于5cm/s.
开关站包括多种输配电构架及安全控制的电气设备,耐振性能各异,不能采用一个标准,其中最重要和最敏感的是继保室的控制元件,国内工程一般采用小于0.5cm/s的振动速度作为安全控制标准,考虑原电站正常工作的重要性,继保室爆破安全振动速度控制标准为小于0.25cm/s.对于开关站内各种输配电构架,按基础地面质点振动速度小于0.5cm/s作为安全控制标准。对开关站内一般房屋爆破安全振动速度控制标准为小于2cm/s.
防渗帷幕的爆破安全控制标准主要是根据大体积新浇混凝土的爆破安全控制标准。根据强度理论,当某一点的应力σmax≥[σd],则材料被拉坏,当某一点的剪应力τmax≥[τd]时,则材料被剪坏。防渗帷幕大多数在静力作用下是受压,在允许抗拉强度相同的条件下该点能承受更大的动拉应力,可承受较大的振动,但“80山包”灌浆区由于受两条大断层的影响,其承载能力较低,因此提出较严格的控制标准。
根据以上条件,提出扩建工程各建(构)筑物控制爆破参数见表4.
实际施工中不同的开挖部位,选取不同的控制指标,如发电厂房建筑结构允许质点振动速度为5 cm/s,而中控室的允许质点振动速度为0.25 cm/s,只要控制中控室的允许质点振动速度不超标,则发电厂房建筑结构允许质点振动速度一定会满足设计要求。引水洞进口EL73.5m高程以上开挖,以“80山包”允许质点振动速度作为控制指标,引水洞进口EL73.5m
表4扩建工程各建(构)筑物控制爆破参数表
序号 | 需保护建(构)筑物名称 | 允许质点振速V (cm/s) |
1 | 泄洪(兼放空)洞 | <10 |
2 | 泄洪(兼放空)洞进口闸门 | <2.5 |
3 | 泄洪(兼放空)洞进口混凝土导墙 | <5 |
4 | 发电厂房建筑结构 | <5 |
5 | 发电厂房中控室 | <0.25 |
6 | 一般房屋 | <2 |
7 | 交通洞 | <10 |
8 | 继电保护室 | <0.25 |
9 | 开关站输配电构架 | <0.5 |
10 | 拦河大坝 | <2.5 |
11 | 滑坡体 | <3 |
12 | “80山包”棱体 | <0.5同时a<0.1g |
13 | 原防渗帷幕 | <2.5 |
柘林电站扩建工程于1998年12月开始动工,开挖主要有进水口、引水渠、引水洞、厂房、开关站和尾水渠等部分,可见爆破施工控制平面图。
原文网址:http://www.pipcn.com/research/200506/8287.htm
也许您还喜欢阅读: