首页建筑研究 专题列表

广州地铁二号线公纪区间渡线大跨度隧道设计与施工

收录时间:2008-10-15 09:49 来源:建筑中文网  作者:唐志成,苟明中,李德  阅读:0次 评论:0我要评论

内容提示: 广州地铁二号线公纪区间渡线大跨度暗挖隧道目前是我国地铁区间隧道中采用浅埋暗挖法施工的最结构采用全包防水.按喷锚构筑法原理进行设计和施工,复合式衬砌形式。该隧道段地理位置重要、地质条件复杂。   【

延伸阅读:大跨 广州地铁 施工 浅埋暗挖 渡线隧道 隧道设计

    【摘 要】 广州地铁二号线公纪区间渡线大跨度暗挖隧道目前是我国地铁区间隧道中采用浅埋暗挖法施工的最结构采用全包防水.按喷锚构筑法原理进行设计和施工,复合式衬砌形式。该隧道段地理位置重要、地质条件复杂。(参考《建筑中文网

    【关键词】 广州地铁 浅埋暗挖 大跨 渡线隧道 隧道设计 施工

    1 隧道概况
    1.1隧道位置
    广州地铁二号线公园前站至纪念堂站区间隧道从公园前站北端经人民公园、穿府前路,从广州市人民政府旁经连新路,穿东风路,与纪念堂站相接,全长614m,该区间除左右正线外,地铁二号线与一号线在此区间设联络线及存车线,存车线与右线间设东南渡线。由于受线型控制,周边环境的制约,以及从地质条件、结构形式、结构受力等多方面综合分析,经技术经济比较,确定在DK14 177.77-DK14 207.27长29.5m段形成四线交汇大跨度隧道,定义为渡线隧道。该段隧道两端分为分修的单线隧道和双线隧道(单线隧道和双线隧道间净距最小处仅0.85m)。为方便施工和加,陕施工进度,在DK14 199.27—DK14 207.27段没8.0mmx20.5m的圆端形竖井。则在DK14 177.77—DK14 199.27长21.5m段采用暗挖法施工。
    该段渡线暗挖隧道位于连新路与府前路的交汇处,广州市政府右前侧,地理位置重要。隧道拱顶埋深约15.0m。隧道结构基本处于含砾粗砂岩的强风化带和全风化带中。要求地表沉降最大不超过30mm,隆起量最大不超过10nlm,施工不得对市政府办公有影响。
    1.2 工程地质概况
    该段属珠江I级堆积地,地形较平缓,地面街道较窄。该段隧道所处地层主要为白垩系上统三水组康乐段砂岩中,拱部主要为全风化、强风化带。由上至下地层分述如下:
    (1)人工填土(Q4m1):为素填土和杂填土,成份杂,由碎石、砖块及生活垃圾和粘性土等组成,呈松散~稍密状,潮湿,局部有架空现象,属I级土。
    (2)冲积—洪积土层:由冲积、洪积作用形成的粘性土(包括粉质粘土,粘土)和粉土组成。粘性土呈可塑~硬塑,粉土呈稍密~中密状,均匀,粘性强。属Ⅱ级松土。
    (3)残积土层{Qe1):由残积作用而形成的粉质粘土、粉土组成。粉质粘土以粘粒为主,粘性强;粉土以粉粒为主。湿—稍湿,由基岩风化而成,含粉砂粒,夹全风化和强风化岩块。为呈硬塑—坚硬状的粉质粘土以及呈中密-密实状的粉土,属Ⅱ级松土。
    以上三层土底层距隧道拱顶距离为4~5m。
    (4)岩石全风化带:棕红色,岩石已风化成土柱状或土块状,稍湿,较密实、坚硬;岩石组织结构已基本破坏,但可辨认;风化不均匀,局部夹强风化岩块。属Ⅲ级硬土。
    (5)岩石强风化带:棕红色,主要由白垩系康乐段粉砂岩、泥质粉砂岩、中砂岩等组成;岩石组织结构已大部分破坏,但尚可清晰辨认,矿物成分已显著变化;风化裂隙发育,岩体破碎;钙质、泥质胶结,岩芯呈碎块状、饼状,也有呈土状,岩质软,属Ⅳ级软石。
    (6)岩石中等风化带:棕红色、暗红色,方含砾砂岩、泥质粉砂岩结构,中厚层状构造;岩石组织结构部分破坏,矿物成分基未变化,—般有风化裂隙及构造裂隙,岩芯—般呈柱状,也有碎块状、饼状;钙质、泥质、铁质胶结,岩质坚硬,完整性好,胶结程度好;属V级次坚石。隧道所处段的围岩级别为V级。1.3 水文地质
    本段隧道地下水有贮存于第四系覆盖层中的孔隙水和贮存于基岩中的裂隙水。地下水位埋深1.30-3.10m。第四系冲积—洪积土层和残积土层,含水贫乏,透水性较差,富水性较小,属于相对不透水层。强风化带和中等风化带岩石,风化裂隙、构造裂隙和节理相对发育,岩石裂隙水主要赋存于强风化带和中等风化带内。抽水试验所得渗透系数(K)为o.04m/d。经水质分析,确定地下水对混凝土结构以及其中的钢筋无侵蚀陛。
    1.4地震烈度
    根据国家1991年地震基本烈度区划图(1:400万),广东省1990年地震烈度区划图(1:80万),本段隧道工程地震基本烈度为Ⅶ度。
    2 隧道建筑限界及主要设计原则
    2.1 建筑限界
    隧道内净空的确定主要从列车运行建筑限界、结构的适当富裕量以及结构的受力、变形等方面综合考虑。隧道内净空近似于一个平放的“鸡蛋”,净宽19.112m(隧道开挖宽度为21.6m),净高11.697m(仰拱底至拱顶),宽高比约为1.6:1,采用七心圆(如图1)。

    广州地铁二号线公纪区间渡线大跨度隧道设计与施工

    2.2 主要设计原则
    (1)按《铁路隧道喷锚构筑法》进行设计和施工,采用复合式衬砌形式。
    (2)隧道施工引起的地面沉降量控制在30rani以内,隆起量控制在10mm以内。
    (3)隧道结构按共同变形理论进行力学分析和计算。初期支护与地层共同承受施工期间的围岩压力,二次衬砌承受30%的围岩压力和全部静水压力。
    (4)二次衬砌配筋以强度和裂缝宽度控制计算,要求最大裂缝宽度允许值为:迎水面0.2mm、背水面0.3mm。
    (5)隧道结构按Ⅶ度地震烈度进行抗震验算并设防。
    (6)隧道防水等级55--级,初支与二衬间全环设防水层。
    3 结构计算
    由于该隧道跨度大、埋深浅,无相类似工程可类比。所以采用先进的软件对鲒构进行模拟分析计算是进行合理设计和安全施工的重要依据。在设计中采用ANSYS V5.5版有限元分析程序模拟隧道施工方法(双侧壁导坑法)的施工过程进行了三维有限元分析。通过三维计算获得了隧道采用暗挖法施工时各阶段围岩的应力应变状态、围岩塑性区分布、地表沉降以及隧道支护结构中的内力变化情况,并研究了大跨隧道施作二衬的时间以及施作二衬时拆除中间临时支护的分段长度,为本隧道采用暗挖法设计与施工提供了科学依据与技术指导。
    隧道结构的三维计算分析采用隧道与地层共同作用的受力模式。根据施工方法和水文地质条件设定:地层荷载与静水压荷载采用水土分算,隧道开挖时初期支护与围岩共同承受施工期间的围岩压力,当二次衬砌施作以后,二次衬砌应承受后期形变压力和静水压力。
    通过对隧道开挖过程的模拟计算,隧道开挖以后引起的地表的最大沉降量为5.738mm,其发生在隧道拱顶部位相对应的地表处;开挖以后引起的地层水平位移最大之处位于拱腰部位,最大位移值为1.757mm。隧道初支的竖向位移最大发生在拱顶中部,为17.574mm。而其水平最大位移发生在的拱腰中部,为1.653mm。隧道二衬的竖向位移最大发生在拱顶的中部,为18.936mm。而隧道二衬的水平最大位移发生在左侧的拱腰中部,为1.757mm。通过对二衬最大位移值与其相对应地表的竖向位移值相比,很明显,隧道开挖以后引起的最大沉降发生二衬拱顶部位,而不在地表处。对于大跨隧道初支与二衬的弯矩和轴力由于计算了较多断面,本文仅以其中有代表性的断面的计算结果进行分析说明。在该断面处初支的最大弯矩发生在左右两侧侧腰处,最大弯矩呈负弯矩,其数值为47.05kN·m。而该断面处初衬的轴力在左右两个拱肩部位处较大,最大轴力位于右侧拱肩处,数值为1 069.26kN,左侧拱肩处的最大轴力为1 049.89kN,从初支的轴力图分析,初支均处于受压状态。从计算分析看,隧道初支不同断面处的弯矩和轴力会出现一定的差别(内力的数量级相同),其出现差别的主要原因在于初支在开挖过程中不是及时封闭的,其闭合过程是随着开挖步骤和顺序而发生变化。因而致使各个断面的内力发生变化。
    隧道在该断面处二衬的最大弯矩发生在右侧拱脚处,最大弯矩呈负弯矩,其数值为254.77kN·m;隧道二衬的轴力在左右两个拱脚和拱腰部位较大,最大轴力位于左侧拱腰处,数值为3 682.79kN,右侧拱脚处的轴力为3442.1kN。二衬的拱顶、拱腰和拱墙均处于受压状态,而仰拱中部则处于受拉状态。从计算分析看,隧道二衬不同断面处的弯矩和轴力会出现一定的差别(内力的数量级相同),二衬内力出现差别的原因也与初支的原因相同。
    为掌握大跨隧道在开挖过程中各个施工步骤所采取临时支护的受力状态,还对开挖过程中临时支护的内力进行了计算。由于大跨隧道开挖过程模拟计算步骤较多,而且模拟开挖时各个开挖面之间前后存在有一定的差距,况且每个开挖步骤中临时支护施作的顺序也不尽相同,其计算结果的数量相应较多,本文仅对开挖大跨隧道时的横联、隔墙以及开挖上半断面时立柱在最不利工况下的内力计算结果列于表1中所示。
    表1 大跨隧道开挖过程中临时支护在最不利工况时的内力值

    广州地铁二号线公纪区间渡线大跨度隧道设计与施工


   
    从计算的结果得到如下结论:
    (1)通过对渡线大跨隧道开挖过程的三维非线有限元计算可知,采用超前注浆长管棚的双侧壁导坑法施工该大跨隧道是完全可行的,用此法施工时所引起的地表沉降可以控制在规定的范围之内。其施工步骤及工序图见图2。

原文网址:http://www.pipcn.com/research/200810/13612.htm

也许您还喜欢阅读:

暗挖通道穿越既有地铁车站施工技术探讨

长距离水平冻结孔施工技术在广州地铁的应用

岩溶地层中的盾构隧道施工

广州地铁砂土层液化判别

地铁盾构隧道施工对周边环境影响的监测

广州地铁盾构施工控制测量措施

广州地铁采购情况分析

已运营地铁车站加装屏蔽门工程实施经验

北京某地铁区间风井、风道施工技术

洞桩法施工在北京地铁中的应用


【重要声明】本作品版权归建筑中文网和作者所有,允许以学习、研究之目的转载、复制和传播,但必须在明显位置注明原文出处和作者署名(请参考以下引文格式)且保证内容一致性,不得用于出售、出版、付费数据库或其它商业目的,本站保留追究一切法律责任的权利。投稿信箱
引用复制:网址 QQ/MSN 论文/著作 HTML代码

请告诉我们

请告诉我们您的知识需求以及对本站的评价与建议。
满意 不满意

Email: