曲线梁桥的受力施工特点及设计方法分析
- 东莞至惠州城际铁路隧道安全风险评估与管理
- 高层建筑给排水系统安装施工技术
- 高层建筑施工质量的五个控制要点
- 房屋建筑工程质量问题、原因和防止措施
- 地下停车场防水工程施工质量预控措施
- 试析绿色施工技术在建筑工程中的应用
- 施工企业预算管理措施及案例分析
- 岩溶地区隧道施工综合预报技术案例分析
- 预制块镶面现浇混凝土隧道洞门施工方法
- 建筑施工模板应用技术简析
摘要:介绍了曲线梁桥的力学特性,结构分析及应注意的几点问题,施工特性及设计方法。(参考《建筑中文网》)
关键词:曲线梁桥,结构,施工
近年来,随着公路建设事业的快速发展,涉及到曲线梁的桥梁设计已经越来越多了,以往设计者希望通过调整路线方案,尽量避开这种结构形式,或由于曲线半径较大,采用以“直”代“曲”的形式,在桥梁上部(如翼缘、护栏等)进行曲线调整,以期达到与路线线形一致。这些严格意义上说都不是曲线桥。由于受原有地物或地形的限制,一些城市的立交桥梁和交叉工程的桥梁曲线半径比较小,桥墩基本上要设在指定位置,这种情况下只能考虑设计曲线梁桥。
1、曲线梁桥的力学特性
1.1曲线梁的受力情况
曲线梁桥能很好地克服地形、地物的限制,可以让设计者较自由地发挥自己的想象,通过平顺、流畅的线条给人以美的享受。但是曲线梁桥的受力比较复杂。与直线梁相比,曲线梁的受力性能有如下特点:
(1)轴向变形与平面内弯曲的耦合;
(2)竖向挠曲与扭转的耦合;
(3)它们与截面畸变的耦合。其中最主要的是挠曲变形和扭转变形的耦合。曲梁在竖向荷载和扭距作用下,都会同时产生弯距和扭距,并相互影响。同时弯道内外侧支座反力不等,内外侧反力差引起较大的扭距,使梁截面处于“弯-扭”耦合作用状态,其截面主拉应力比相应的直梁桥大得多。故在曲线梁桥中,应选用抗扭刚度较大的箱型截面形式。在曲梁中,由于存在较大的扭矩,通常会出现“外梁超载,内梁卸载”的现象,这种现象在小半径的宽桥中特别明显。另外,由于曲梁内外侧支座反力有时相差很大,当活载偏置时,内侧支座甚至会出现负反力,如果支座不能承受拉力,就会出现梁体与支座发生脱离的现象,通常称为“支座脱空”。
1.2下部桥梁墩台的受力情况
由于内外侧支座反力不相等,使各墩柱所受垂直力出现较大差距。当扭矩很大时,如果设置了拉压支座,有些墩柱甚至会出现拉力。曲线梁桥下部结构墩顶水平力,除了与直桥一样,有制动力、温度力、地震力等以外,还因为弯梁曲率的存在,多了离心力和预应力张拉时产生的径向力。墩顶水平力的分配非常复杂。在求温度零点时,曲线梁桥不能象直桥一样,只考虑一个方向力的平衡,而必须考虑两个方向的平衡;各墩顶处支座的类型和位置不一致,部分支座可能已处于临界滑移状态,其余支座还未达到临界状态;各支座的约束方向以及各墩柱不在同一平面内,使得水平力求解非常困难。
2、曲线梁桥的结构分析
2.1上部结构分析
2.1.1结构力学方法
这种方法沿用杆系系统的结构力学方法。首先将弯梁视为一根曲杆,把抗扭支座以赘余扭矩代替,然后根据变形协调条件求解未知力。这种方法较简单,比较适用于分析简支弯梁和等截面且跨内为圆弧的窄桥。
2.1.2梁格法
梁格法是目前最常用的分析弯梁桥的方法。梁格法实质是用一个等效的梁格来代替桥梁上部结构,是一种以梁为基本单元的有限元法。这种方法概念明确,容易理解和使用,也比较容易操作,计算速度也比较快。现有的计算曲线梁梁桥软件,如同济大学开发的“桥梁博士”和广州阿安毕公司开发的“3DBSA”,都采用了梁格法。
2.1.3空间有限元法
空间有限元法是最有效的分析方法。这种方法常采用体单元和壳单元来模拟结构,能计算任意形状的复杂结构,特别地,它能针对结构的局部作精确分析,这是上述两种计算方法无法做到的。对于一些特殊的曲线梁桥,比如非径向支承的异型桥梁等,采用空间有限元法分析是非常有必要的。此外,如果要了解曲线梁桥的稳定与振动特性,也必须采用空间有限元法。常用的空间有限元软件有MIDAS、ANSYS、SAP2000等。采用空间有限元法的缺点是计算工作量较大,在当前情况下,采用这种方法计算,需要付出较多的时间。
2.2下部结构分析
与直桥相比,曲线梁桥下部结构分析要复杂得多。在荷载方面,曲线梁桥除了与直桥一样要承受各种外荷载,如自重、车辆荷载、温度力、地震力等,还要承受离心力、曲梁内预应力索产生的径向力等;在墩顶水平力的分配方面,由于曲线梁桥不能象直桥一样,在求温度零点时不能只考虑一个方向的平衡,而要考虑两个方向的平衡,求出“不动点(转动中心)”;由于上部结构的扭转作用,各墩的轴力有很大的差异,在确定桩长时要特别注意这种情况;此外,由于各支座约束情况不一样,也会影响到各墩内力的分配。长期以来,人们对曲线梁桥上部结构分析比较重视。就目前的情况看,有关曲线梁桥上部结构分析的专著比较多,理论也比较成熟。与上部结构相比,针对曲线梁桥下部结构的研究还不够深入。
3、曲线梁桥设计应注意的几个问题
3.1总体布置
在进行桥梁总体布置时,要考虑两个方面问题:从结构受力方面,要注意调整梁内的扭矩分布,控制扭矩峰值,使梁截面以及支座受力较均匀;从结构变形方面,要注意控制梁端纵横向变位及翘曲变形,使之符合规范要求。要得到这些结果,主要是靠调整跨径搭配和处理边界条件。
3.1.1跨径的搭配
从已建成的桥梁看,梁端内侧支座“脱空”现象比较严重,主要是因为内侧支座反力太小甚至出现了负值。所以,我们要使内侧支座处于受压状态,并且要有一定的压力储备。比较有效的办法是控制边跨跨径,使边跨跨径与中跨比较接近。当受实际条件限制,边跨跨径与中跨差距较大时,也可考虑采取其他一些措施,比如调整边跨与中跨的自重等。
3.1.2边界条件
边界条件影响到整个结构的受力状态。在实际设计时,要分别采用不同的约束进行试算,然后决定结构的边界条件。
3.2曲线梁的结构设计
直梁桥受“弯、剪”作用,而曲线梁桥处于“弯、剪、扭”的复合受力状态,故上、下部结构必须构成有利于抵抗“弯、剪、扭”的措施。
3.2.1曲线梁桥的弯扭刚度比对结构的受力状态和变形状态有着直接的关系:弯扭刚度比越大,由曲率因素而导致的扭转弯形越大,因此,对于曲线梁桥而言在满足竖向变形的前提下,应尽可能减小抗弯刚度、增大抗扭刚度。所以在曲线桥梁中,宜选用低高度梁和抗扭惯矩较大的箱形截面。
3.2.2在曲线梁桥截面设计时,要在桥跨范围内设置一些横隔板,以加强横桥向刚度并保持全桥稳定性。在截面发生较大变化的位置,要设渐变段过渡,减小应力集中效应。
3.2.3在进行配筋设计时要充分考虑扭矩效应,弯梁应在腹板侧面布置较多受力钢筋,其截面上下缘钢筋也比同等跨径的直桥多,且应配置较多的抗扭箍筋。
3.2.4城市立交桥中的弯箱梁桥中墩多布置成独柱支承构造。在独柱式点铰支承曲线连续梁中,上部结构在外荷载作用下产生的扭矩不能通过中间支承传至基础,而只能通过曲梁两端抗扭支承来传递,从而易造成曲梁产生过大扭矩。为减小曲线梁桥梁体受扭对上、下部结构产生的不利影响,可采用以下方法进行结构受力平衡的调整:
①为减小此项扭矩的影响,比较有效的办法是通过调整独柱支承偏心值来改善主梁受力。
②通过预应力筋的径向偏心距来消除曲梁内某些截面过大的扭矩,改善主梁的受力状态也是一种行之有效的办法。预应力曲线梁往往产生向外偏转的情况,这是由其结构特点造成的。预应力产生的扭矩分布和自重、恒载作用下的扭矩分布规律有着较大的区别,为调整扭矩分布,可在曲线梁轴线两侧采用不同的预应力钢束及锚下控制应力,构成预应力束应力的偏心,形成内扭矩来调整曲线梁扭矩分布。
3.2.5下部支承方式的确定。曲线梁桥的不同支承方式,对其上、下部结构内力影响非常大。对于曲线梁桥,中间支承一般分为两种类型:抗扭型支承(多支点或墩梁固结)和单支点铰支承。在曲线梁桥选择支承方式时,可遵循以下原则:
①对于较宽的桥(桥宽B>12m)和曲线半径较大(一般R>100m)的曲线梁桥,由于主梁扭转作用较小,桥体宽要求主梁增加横向稳定性,故在中墩宜采用具有抗扭较强的多柱或多支座的支承方式,亦可采用墩柱与梁固结的支承形式。
②对于较窄的桥(桥宽B≤12m)和曲线半径较小(一般约R≤100m)的曲线梁桥,由于主梁扭转作用的增加,尤其在预应力钢束径向力的作用下,主梁横向扭矩和扭转变形很大。由于桥窄因此宜采用独柱墩,但在选用支承结构形式时应视墩柱高度不同而确定。较高的中墩可采用墩柱与梁固结的结构支承形式。较低的中墩可采用具有较弱抗扭能力的单点支承的方式。这样可有效降低墩柱的弯短和减小主梁的横向扭转变形。但这两种交承方式都需对横向支座偏心进行调整。
原文网址:http://www.pipcn.com/research/200712/9835.htm
也许您还喜欢阅读: