请告诉我们您的知识需求以及对本站的评价与建议。
满意 不满意
Email:
GPS测量中坐标系统、坐标系的转换过程
栏目最新
- 改进的隧道监测系统(TMS)在隧道围岩变形监测中的应用
- 我国岩土工程在可持续发展中的新使命及其实现问题
- 矿山地质环境治理问题研究
- 岩土工程勘察中常见的技术问题及解决措施探讨
- RTK-GPS在广州新电视塔变形监测中的应用研究
- 既有建筑物加固修缮勘察与地基基础加固方案选择
- 现场测量建筑围护结构节能特性的问题分析
- 文物保护建筑勘察特点及工程实例分析
- 旁侧荷载对复合地基性状的影响
- 从工程实例分析谈顺层岩质边坡的勘察与参数选取
网站最新
摘 要:GPS在测量领域得到了广泛的应用,本文介绍将GPS所采集到的WGS-84坐标转换成工程所需的坐标的过程。(参考《建筑中文网》)
关键词:GPS 坐标系统 坐标系 转换
一、概述GPS及其应用
GPS即全球定位系统(Global Positioning System)是美国从本世纪70年代开始研制,历时20年,耗资200亿美元,于1994年全面建成的卫星导航定位系统。作为新一代的卫星导航定位系统经过二十多年的发展,已成为在航空、航天、军事、交通运输、资源勘探、通信气象等所有的领域中一种被广泛采用的系统。我国测绘部门使用GPS也近十年了,它最初主要用于高精度大地测量和控制测量,建立各种类型和等级的测量控制网,现在它除了继续在这些领域发挥着重要作用外还在测量领域的其它方面得到充分的应用,如用于各种类型的工程测量、变形观测、航空摄影测量、海洋测量和地理信息系统中地理数据的采集等。GPS以测量精度高; 操作简便,仪器体积小,便于携带; 全天候操作;观测点之间无须通视;测量结果统一在WGS84坐标下,信息自动接收、存储,减少繁琐的中间处理环节、高效益等显著特点,赢得广大测绘工作者的信赖。
二、GPS测量常用的坐标系统
1.WGS-84坐标系
WGS-84坐标系是目前GPS所采用的坐标系统,GPS所发布的星历参数就是基于此坐标系统的。 WGS-84坐标系统的全称是World Geodical System-84(世界大地坐标系-84),它是一个地心地固坐标系统。WGS-84坐标系统由美国国防部制图局建立,于1987年取代了当时GPS所采用的坐标系统―WGS-72坐标系统而成为GPS的所使用的坐标系统。WGS-84坐标系的坐标原点位于地球的质心,Z轴指向BIH1984.0定义的协议地球极方向,X轴指向BIH1984.0的启始子午面和赤道的交点,Y轴与X轴和Z轴构成右手系。采用椭球参数为: a = 6378137m f = 1/298.257223563
2.1954年北京坐标系
1954年北京坐标系是我国目前广泛采用的大地测量坐标系,是一种参心坐标系统。该坐标系源自于原苏联采用过的1942年普尔科夫坐标系。该坐标系采用的参考椭球是克拉索夫斯基椭球,该椭球的参数为:a = 6378245m f = 1/298.3。我国地形图上的平面坐标位置都是以这个数据为基准推算的。
3.地方坐标系(任意独立坐标系)
在我们测量过程中时常会遇到的如一些某城市坐标系、某城建坐标系、某港口坐标系等,或我们自己为了测量方便而临时建立的独立坐标系。
三、坐标系统的转换
在工程应用中使用GPS卫星定位系统采集到的数据是WGS-84坐标系数据,而目前我们测量成果普遍使用的是以1954年北京坐标系或是地方(任意)独立坐标系为基础的坐标数据。因此必须将WGS-84坐标转换到BJ-54坐标系或地方(任意)独立坐标系。
目前一般采用布尔莎公式(七参数法)完成WGS-84坐标系到北京54坐标系的转换,得到北京54坐标数据。
XBJ54=XWGS84 KXWGS84 Δx YWGS84ξZ"/ρ"-ZWGS84ξY"/ρ"
YBJ54=YWGS84 KYWGS84 ΔY-XWGS84ξZ"/ρ" ZWGS84ξX"/ρ"
ZBJ54=ZWGS84 KZWGS84 ΔZ XWGS84ξY"/ρ"-ZWGS84ξX"/ρ"
四、坐标系的变换
同一坐标系统下坐标有多种不同的表现形式,一种形式实际上就是一种坐标系。如空间直角坐标系(X,Y,Z)、大地坐标系(B,L)、平面直角坐标(x,y)等。通过坐标统的转换我们得到了BJ54坐标系统下的空间直角坐标,我们还须在BJ54坐标系统下再进行各种坐标系的转换,直至得到工程所需的坐标。
1.将空间直角坐标系转换成大地坐标系,得到大地坐标(B,L):
L=arctan(Y/X)
B=arctan {(Z Ne2sinB)/(X2 Y2)0.5}
H=(X2 Y2)0.5sinB-N
用上式采用迭代法求出大地坐标(B,L)
2.将大地坐标系转换成高斯坐标系,得到高斯坐标(x,y)
按高斯投影的方法求得高斯坐标,x=F1(B,L),y=F2(B,L)
3.将高斯坐标系转换成任意独立坐标系,得到独立坐标(x’,y’)
在小范围内测量,我们可以将地面当作平面,用简单的旋转、平移便可将高斯坐标换成工程中所采用坐标系的坐标(x’,y’),
x’=xcosα ysinα
y’=ycosα-xsinα
五、小结
由于GPS测量的种种优点,GPS 定位技术现已基本上取代了常规测量手段成为了主要的技术手段,市面上出现了许多转换软件和不同型号的GPS数据处理配套软件(包含了怎样将GPS测量中所得到的WGS-84转换成工程中所须坐标的功能),万变不离其宗,只要我们明白了WGS-84转换到独立坐标系的转换过程,便可很容易的使用该软件了,甚至可以自己编写程序,将WGS-84坐标转换成独立坐标系坐标。
本文主要是介绍坐标系统、坐标系的转换过程,文中提及的符号及具体转换方法请参阅相关文献。
参考文献
[1] 徐绍铨等.GPS测量原理及应用(3S丛书).武汉测绘科技大学出版社.1998.
[2] 朱华统等.GPS坐标系统的变换.北京测绘出版社.1994.
[3] 武汉测绘学院等.控制测量学(下).测绘出版社.1988.
[4] 杨德麟等.大比例尺数字测图的原理方法与应用.清华大学出版社.1998. 来源: 《建筑中文网》.
关键词:GPS 坐标系统 坐标系 转换
一、概述GPS及其应用
GPS即全球定位系统(Global Positioning System)是美国从本世纪70年代开始研制,历时20年,耗资200亿美元,于1994年全面建成的卫星导航定位系统。作为新一代的卫星导航定位系统经过二十多年的发展,已成为在航空、航天、军事、交通运输、资源勘探、通信气象等所有的领域中一种被广泛采用的系统。我国测绘部门使用GPS也近十年了,它最初主要用于高精度大地测量和控制测量,建立各种类型和等级的测量控制网,现在它除了继续在这些领域发挥着重要作用外还在测量领域的其它方面得到充分的应用,如用于各种类型的工程测量、变形观测、航空摄影测量、海洋测量和地理信息系统中地理数据的采集等。GPS以测量精度高; 操作简便,仪器体积小,便于携带; 全天候操作;观测点之间无须通视;测量结果统一在WGS84坐标下,信息自动接收、存储,减少繁琐的中间处理环节、高效益等显著特点,赢得广大测绘工作者的信赖。
二、GPS测量常用的坐标系统
1.WGS-84坐标系
WGS-84坐标系是目前GPS所采用的坐标系统,GPS所发布的星历参数就是基于此坐标系统的。 WGS-84坐标系统的全称是World Geodical System-84(世界大地坐标系-84),它是一个地心地固坐标系统。WGS-84坐标系统由美国国防部制图局建立,于1987年取代了当时GPS所采用的坐标系统―WGS-72坐标系统而成为GPS的所使用的坐标系统。WGS-84坐标系的坐标原点位于地球的质心,Z轴指向BIH1984.0定义的协议地球极方向,X轴指向BIH1984.0的启始子午面和赤道的交点,Y轴与X轴和Z轴构成右手系。采用椭球参数为: a = 6378137m f = 1/298.257223563
2.1954年北京坐标系
1954年北京坐标系是我国目前广泛采用的大地测量坐标系,是一种参心坐标系统。该坐标系源自于原苏联采用过的1942年普尔科夫坐标系。该坐标系采用的参考椭球是克拉索夫斯基椭球,该椭球的参数为:a = 6378245m f = 1/298.3。我国地形图上的平面坐标位置都是以这个数据为基准推算的。
3.地方坐标系(任意独立坐标系)
在我们测量过程中时常会遇到的如一些某城市坐标系、某城建坐标系、某港口坐标系等,或我们自己为了测量方便而临时建立的独立坐标系。
三、坐标系统的转换
在工程应用中使用GPS卫星定位系统采集到的数据是WGS-84坐标系数据,而目前我们测量成果普遍使用的是以1954年北京坐标系或是地方(任意)独立坐标系为基础的坐标数据。因此必须将WGS-84坐标转换到BJ-54坐标系或地方(任意)独立坐标系。
目前一般采用布尔莎公式(七参数法)完成WGS-84坐标系到北京54坐标系的转换,得到北京54坐标数据。
XBJ54=XWGS84 KXWGS84 Δx YWGS84ξZ"/ρ"-ZWGS84ξY"/ρ"
YBJ54=YWGS84 KYWGS84 ΔY-XWGS84ξZ"/ρ" ZWGS84ξX"/ρ"
ZBJ54=ZWGS84 KZWGS84 ΔZ XWGS84ξY"/ρ"-ZWGS84ξX"/ρ"
四、坐标系的变换
同一坐标系统下坐标有多种不同的表现形式,一种形式实际上就是一种坐标系。如空间直角坐标系(X,Y,Z)、大地坐标系(B,L)、平面直角坐标(x,y)等。通过坐标统的转换我们得到了BJ54坐标系统下的空间直角坐标,我们还须在BJ54坐标系统下再进行各种坐标系的转换,直至得到工程所需的坐标。
1.将空间直角坐标系转换成大地坐标系,得到大地坐标(B,L):
L=arctan(Y/X)
B=arctan {(Z Ne2sinB)/(X2 Y2)0.5}
H=(X2 Y2)0.5sinB-N
用上式采用迭代法求出大地坐标(B,L)
2.将大地坐标系转换成高斯坐标系,得到高斯坐标(x,y)
按高斯投影的方法求得高斯坐标,x=F1(B,L),y=F2(B,L)
3.将高斯坐标系转换成任意独立坐标系,得到独立坐标(x’,y’)
在小范围内测量,我们可以将地面当作平面,用简单的旋转、平移便可将高斯坐标换成工程中所采用坐标系的坐标(x’,y’),
x’=xcosα ysinα
y’=ycosα-xsinα
五、小结
由于GPS测量的种种优点,GPS 定位技术现已基本上取代了常规测量手段成为了主要的技术手段,市面上出现了许多转换软件和不同型号的GPS数据处理配套软件(包含了怎样将GPS测量中所得到的WGS-84转换成工程中所须坐标的功能),万变不离其宗,只要我们明白了WGS-84转换到独立坐标系的转换过程,便可很容易的使用该软件了,甚至可以自己编写程序,将WGS-84坐标转换成独立坐标系坐标。
本文主要是介绍坐标系统、坐标系的转换过程,文中提及的符号及具体转换方法请参阅相关文献。
参考文献
[1] 徐绍铨等.GPS测量原理及应用(3S丛书).武汉测绘科技大学出版社.1998.
[2] 朱华统等.GPS坐标系统的变换.北京测绘出版社.1994.
[3] 武汉测绘学院等.控制测量学(下).测绘出版社.1988.
[4] 杨德麟等.大比例尺数字测图的原理方法与应用.清华大学出版社.1998. 来源: 《建筑中文网》.
原文网址:http://www.pipcn.com/research/200610/6329.htm
也许您还喜欢阅读: