夯扩桩在杭州下沙地区的应用
- 东莞至惠州城际铁路隧道安全风险评估与管理
- 高层建筑给排水系统安装施工技术
- 高层建筑施工质量的五个控制要点
- 房屋建筑工程质量问题、原因和防止措施
- 地下停车场防水工程施工质量预控措施
- 试析绿色施工技术在建筑工程中的应用
- 施工企业预算管理措施及案例分析
- 岩溶地区隧道施工综合预报技术案例分析
- 预制块镶面现浇混凝土隧道洞门施工方法
- 建筑施工模板应用技术简析
内容提示:杭州下沙地区位于钱塘江北岸,属钱塘江冲海积平原,地层分布较稳定。地基土主要由粉土组成,深8~9m处就有性质较好的2d砂质粉土夹粉砂土层,且分布广泛而有一定厚度,是较理想的桩端持力层。康莱特下沙住宅工程1.3万m2,其地质情况在下沙地区有典型的代表性。
摘要:杭州下沙地区位于钱塘江北岸,属钱塘江冲海积平原,地层分布较稳定。地基土主要由粉土组成,深8~9m处就有性质较好的2d砂质粉土夹粉砂土层,且分布广泛而有一定厚度,是较理想的桩端持力层。康莱特下沙住宅工程1.3万m2,其地质情况在下沙地区有典型的代表性。
关键词:桩基础 施工管理 复杂地质
1 概述
杭州下沙地区位于钱塘江北岸,属钱塘江冲海积平原,地层分布较稳定。地基土主要由粉土组成,深8~9m处就有性质较好的2d砂质粉土夹粉砂土层,且分布广泛而有一定厚度,是较理想的桩端持力层。康莱特下沙住宅工程1.3万m2,其地质情况在下沙地区有典型的代表性(表1) 。根据地质报告,场地地下水主要赋存于上部粉土、粉砂层中的潜水,水位较高,并受大气 降水影响,动态变化较大。地下水能引起粉土膨胀,浅基础不易控制建筑物的不均匀沉降。另外,2c土层为液化土层,也应避免用该土层作为持力层。因此在结构方案阶段就否定了浅基础方案。预制桩基固然可行,但在目前它的价格较高。此外,从地基承载力和造价上分析,灌注桩基础应该是比较理想的,但据调查因成桩难,在该地区很少应用。将普通沉管灌注桩方法与桩端扩底技术相结合的夯扩桩,可充分发挥端承效果,而且造价低,通过康莱特下沙住宅工程的成功应用,积累了一定的经验。经过分析比较,我们选用了夯扩桩基础。(参考《建筑中文网》)
表1 住宅工程的综合地质
土层及其名称 | 层厚(m) | 主要物理性质 | 地基土参数 | 预制桩参数 | 夯扩桩 | ||||||
w(%) | e | wc(%) | Ip(%) | a1~2(MPa) | Es(MPa) | fk(kPa) | qs(kPa) | qp(kPa) | qp(kPa) | ||
2a砂质粉土 | 0.7~1.4 | 30.2 | 0.876 | 31.9 | 5.3 | 0.21 | 7.0 | 110 | 16 | | |
2b砂质粉土 | 1.6~2.7 | 25.2 | 0.70 | 28.2 | 6.6 | 0.12 | 12 | 170 | 24 | | |
2c砂质粉土 | 4.4~5.8 | 28.3 | 0.771 | 30.1 | 5.5 | 0.14 | 11 | 155 | 22 | | 780 |
3a砂质粉土夹粉砂 | 9.2~10.9 | 26.0 | 0.725 | | | 0.16 | 13 | 180 | 28 | 1700 | 1100 |
2 夯扩桩桩基设计
2.1 理论依据
桩的极限承载力(抗压)不能简单地理解为极限侧阻力加上极限端阻力。桩土之间出现不大的相对滑动时就出现极限侧阻力,当上部滑动量大的范围内土体发挥了极限剪切强度以后,部分荷载又传回给桩身,依次产生更大的相对滑动并逐渐发展到更大的深度。只有当整个桩身侧阻力达到极限值的瞬间,桩底下面的土体中形成了一种极限强度状态,好像桩尖在排开土体,力图挤进土层。此时,承载力是极限侧阻力和桩底承载力的组合。极限侧阻力的发挥主要取决于桩土相对位移,称为极限位移。只有当桩底位移Δs足够大时,桩端的极限强度就全部发挥出来,桩的极限承载力(抗压)(在该荷载下的下沉或下沉速率剧烈增大)可由下式确定:Pu=Ppu+ΣPsi(式中Ppu极限桩端承载力;ΣPsi桩端以上土层极限侧阻力的总和)。
下沙地区的工程地质特点是持力层埋深浅,而上部土层为软弱土层,在不大的荷载下,就能达到整个桩身极限侧阻力。夯扩桩扩大了的桩头,降低了桩端应力水平,阻止了桩尖的刺入破坏。浙江省标准《建筑软弱地基基础设计规范(DBJ 10-1-90)棗条文说明》中指出,夯扩桩是以端承为主,侧阻力为辅的桩型,适用于上部为软弱土层,在距地表4~14m处有一层性质较好的桩端持力层。
2.2 设计参数和承载力的确定
3a土层是一个较理想的持力层,该土层分布广泛,厚度也较均匀(表1)。根据地质报告提供的参数和浙江省标准《建筑软弱地基础设计规范(DBJ 10-1-90)》,初步确定夯扩设计参数为第一次在外管内灌注的混凝土高度H=1900mm;外管上拔高度h=800mm ;混凝土全部夯出外管后外管和内夯管同步下沉深度h-c=600mm。代入各参数后可取D=600mm。
根据《DBJ 10-1-90》规范的公式;可算得单桩竖向承载力标准值Rk=565kN,设计时取作550kN。由此可见桩端土承载力约占总承载力标准值的75%以上。
2.3 桩端进入持力层深度
桩的承载力,主要是桩端承载力,随着进入持力层的深度(特别是进入砂质粉土类粉砂层的深度)不同而具有不同的变化规律,称之为深度效应。深度效应的主要规律之一是存在着一个临界深度hc。当桩进入持力层的深度h<hc时,桩端极限承载力qpu基本上随深度而线性增大,当h≥hc时,qpu则保持不变,称之为端阻力稳定值,规范中推荐的进入持力层深度为1.50~2.00m。根据本工程地质的实际情况,选择进入持力层深度为1.5m,有效桩长7.5m。
3 成桩难的原因分析及解决方法
在下沙地区打沉管灌注桩常出现这样的现象:一种是施工时无法将混凝土灌到设计标高,另一种是开挖后,发现近地表的上段桩虽在,而下段桩身混凝土已流失或仅存部分骨料石子。出现这种现象的主要原因是该地区地基土易液化,打桩时措施不当。
就以康莱特下沙住宅工程地基土为例,持力层3a以上土层主要为砂质粉土,松散,孔隙比大,土层粒径在0.01~0.074mm之间的颗粒占86%以上。有关资料表明,平均粒径为0.05~0.1mm的粉砂土的抗液化能力最低。
在沉管过程中,一方面由于土体受到震动,使得孔隙中的水产生超静水压力,另一方面在成孔过程中,桩管周围一定范围内的土体受到挤压,使得土的孔隙减小,而孔隙中的水还来不及排出,也产生了超静水压力μ。水在水力梯度(i)下从高能量级向低能量级处流动,此时土中总应力为:σ=σ′+(μ+Δμ)或σ′=σ-(μ+Δμ),式中σ′有效应力;Δμ孔隙水压力增量。可见当Δμ不断增大,直到有效应力σ′减小到零,有效应力使粉砂土产生全部抗剪强度。当σ′=0时土体抗剪强度等于零,便出现了流砂现象,土粒之间压力消失,土粒处于悬浮状态,土体随水流动。地下水的渗流对土单位体积产生的压力GD称为动水压力。在桩外管拔出过程中,桩管中的混凝土也受到GD的作用。当GD较大且桩管中混凝土因自重引起的材料间的摩擦力不足以抵抗GD时,混凝土中的水泥砂就被流砂带走,甚至还会将骨料冲走。随着时间的推移,孔隙水压力逐渐消散。
原文网址:http://www.pipcn.com/research/200603/1608.htm
也许您还喜欢阅读: